
Package: campfin (via r-universe)
September 11, 2024

Type Package

Title Wrangle Campaign Finance Data

Version 1.0.11

Description Explore and normalize American campaign finance data.
Created by the Investigative Reporting Workshop to facilitate
work on The Accountability Project, an effort to collect public
data into a central, standard database that is more easily
searched: <https://publicaccountability.org/>.

License CC BY 4.0

URL https://github.com/irworkshop/campfin,

https://irworkshop.github.io/campfin/

BugReports https://github.com/irworkshop/campfin/issues

Depends R (>= 3.2)

Imports dplyr (>= 0.8.3), fs (>= 1.3.1), ggplot2 (>= 3.2.1), glue (>=
1.3.1), httr (>= 1.4.1), lubridate (>= 1.7.4), magrittr (>=
1.5), purrr (>= 0.3.2), readr (>= 1.3.1), rlang (>= 0.4.0),
scales (>= 1.0.0), stringdist (>= 0.9.5.2), stringr (>= 1.4.0),
tibble (>= 2.1.3)

Suggests covr (>= 3.3.2), knitr (>= 1.23), rmarkdown (>= 1.14),
spelling (>= 2.1), testthat (>= 2.1.0), usethis (>= 1.6.0)

VignetteBuilder knitr

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://irworkshop.r-universe.dev

RemoteUrl https://github.com/irworkshop/campfin

RemoteRef HEAD

RemoteSha a146c16a21b816871e9547ea51c6901432becdc1

1

https://publicaccountability.org/
https://github.com/irworkshop/campfin
https://irworkshop.github.io/campfin/
https://github.com/irworkshop/campfin/issues

2 Contents

Contents
abbrev_full . 3
abbrev_state . 4
add_prop . 5
all_files_new . 6
check_city . 6
col_date_mdy . 7
col_stats . 8
count_diff . 9
count_in . 10
count_na . 11
count_out . 11
dark2 . 12
expand_abbrev . 13
expand_state . 14
explore_plot . 14
extra_city . 15
fetch_city . 16
file_age . 16
file_encoding . 17
flag_dupes . 17
flag_na . 18
flush_memory . 19
guess_delim . 19
invalid_city . 20
invert_named . 20
is_abbrev . 21
is_binary . 21
is_even . 22
keypad_convert . 22
most_common . 23
na_in . 24
na_out . 24
na_rep . 25
non_ascii . 26
normal_address . 26
normal_city . 27
normal_phone . 28
normal_state . 29
normal_zip . 30
path.abbrev . 31
progress_table . 32
prop_distinct . 32
prop_in . 33
prop_na . 34
prop_out . 34
read_names . 35

abbrev_full 3

rename_prefix . 36
rx_break . 36
rx_phone . 37
rx_state . 37
rx_url . 38
rx_zip . 38
scale_x_truncate . 38
str_dist . 39
str_normal . 39
this_file_new . 40
url2path . 41
url_file_size . 41
use_diary . 42
usps_city . 43
usps_state . 43
usps_street . 44
valid_abb . 44
valid_city . 45
valid_name . 45
valid_state . 45
valid_zip . 46
what_in . 46
what_out . 47
zipcodes . 48
%out% . 48

Index 50

abbrev_full Abbreviate full strings

Description

Create or use a named vector (c("full" = "abb")) and pass it to stringr::str_replace_all().
The full argument is surrounded with \\b to capture only isolated intended full versions. Note
that the built-in usps_street, usps_city, and usps_state dataframes have the columns reversed from
what this function needs (to work by default with the counterpart expand_abbrev()).

Usage

abbrev_full(x, full = NULL, rep = NULL, end = FALSE)

4 abbrev_state

Arguments

x A vector containing full words.

full One of three objects: (1) A dataframe with full strings in the first column and
corresponding abbreviations in the second column; (2) a named vector, with full
strings as names for their respective abbreviations (e.g., c("full" = "abb"));
or (3) an unnamed vector of full words with an unnamed vector of abbreviations
in the rep argument.

rep If full is an unnamed vector, a vector of abbreviations strings for each full word
in abb.

end logical; if TRUE, then the $ regular expression will be used to only replace words
at the end of a string (such as "ROAD" in a street address). If FALSE (default),
then the \b regular expression will target all instances of full to be replaced
with rep.

Value

The vector x with full words replaced with their abbreviations.

See Also

Other geographic normalization functions: abbrev_state(), check_city(), expand_abbrev(),
expand_state(), fetch_city(), normal_address(), normal_city(), normal_state(), normal_zip(),
str_normal()

Examples

abbrev_full("MOUNT VERNON", full = c("MOUNT" = "MT"))
abbrev_full("123 MOUNTAIN ROAD", full = usps_street)
abbrev_full("123 MOUNTAIN ROAD", full = usps_street, end = TRUE)
abbrev_full("Vermont", full = state.name, rep = state.abb)

abbrev_state Abbreviate US state names

Description

This function is used to first normalize a full state name and then call abbrev_full() using
valid_name and valid_state as the full and rep arguments.

Usage

abbrev_state(full)

Arguments

full A full US state name character vector (e.g., "Vermont").

add_prop 5

Value

The 2-letter USPS abbreviation of for state names (e.g., "VT").

See Also

Other geographic normalization functions: abbrev_full(), check_city(), expand_abbrev(),
expand_state(), fetch_city(), normal_address(), normal_city(), normal_state(), normal_zip(),
str_normal()

Examples

abbrev_state(full = state.name)
abbrev_state(full = c("new mexico", "france"))

add_prop Add proportions

Description

Use prop.table() to add a proportion column to a dplyr::count() tibble.

Usage

add_prop(.data, n, sum = FALSE)

Arguments

.data A data frame with a count column.

n The column name with a count, usually n from dplyr::count().

sum Should cumsum() be called on the new p column.

Details

mean(x %in% y)

Value

A data frame with the new column p.

Examples

add_prop(dplyr::count(ggplot2::diamonds, cut))

6 check_city

all_files_new Check if all files in a directory are new

Description

Tests whether all the files in a given directory have a modification date equal to the system date.
Useful when repeatedly running code with a lengthy download stage. Many state databases are
updated daily, so new data can be helpful but not always necessary. Set this function in an if
statement.

Usage

all_files_new(path, glob = NULL, ...)

Arguments

path The path to a directory to check.

glob A pattern to search for files (e.g., "*.csv").

... Additional arguments passed to fs::dir_ls().

Value

logical; Whether all() files in the directory have a modification date equal to today.

Examples

tmp <- tempdir()
file.create(tempfile(pattern = as.character(1:5)))
all_files_new(tmp)

check_city Check whether an input is a valid place with Google Maps API

Description

Check whether a place is a valid place or misspelling by matching against the Google Geocoding
search result. Use the httr::GET() to send a request to the Google Maps API for geocoding
information. The query will concatenate all the geographical information that is passed in into a
long string. Then the function pulls the formatted_address endpoint of the API results and then
identifies and extracts the long name field from the API locality result and compare it against the
input to see if the input and output match up. Note that you will need to pass in your Google Maps
Place API key to the key argument.

Usage

check_city(city = NULL, state = NULL, zip = NULL, key = NULL, guess = FALSE)

col_date_mdy 7

Arguments

city A string of city name to be submitted to the Geocode API.

state Optional. The state associated with the city.

zip Optional. Supply a string of ZIP code to increase precision.

key A character string to be passed into key. Save your key as "GEOCODE_KEY"
using Sys.setenv() or by editing your .Renviron file.

guess logical; Should the function return a single row tibble containing the original
data sent and the multiple components returned by the Geocode API.

Value

A logical value by default. If the city returned by the API comes back the same as the city input, the
function will evaluate to TRUE, in all other circumstances (including API errors) FALSE is returned.

If the the guess argument is set to TRUE, a tibble with 1 row and six columns is returned:

• original_city: The city value sent to the API.

• original_state: The state value sent to the API.

• original_zip: The zip value sent to the API.

• check_city_flag: logical; whether the guessed city matches.

• guess_city: The legal city guessed by the API.

• guess_place: The generic locality guessed by the API.

See Also

https://developers.google.com/maps/documentation/geocoding/overview?csw=1

Other geographic normalization functions: abbrev_full(), abbrev_state(), expand_abbrev(),
expand_state(), fetch_city(), normal_address(), normal_city(), normal_state(), normal_zip(),
str_normal()

col_date_mdy Parse USA date columns in readr functions

Description

Parse dates with format MM/DD/YYYY. This function simply wraps around readr::col_date()
with the format argument set to "%m/%d/%Y". Many US campaign finance datasets use this format.

Usage

col_date_mdy()

col_date_usa()

https://developers.google.com/maps/documentation/geocoding/overview?csw=1

8 col_stats

Value

A POSIXct vector.

Examples

readr::read_csv(file = "x\n11/09/2016", col_types = readr::cols(x = col_date_mdy()))

col_stats Apply a statistic function to all column vectors

Description

Apply a counting summary function like dplyr::n_distinct() or count_na() to every column
of a data frame and return the results along with a percentage of that value.

Usage

col_stats(data, fun, print = TRUE)

glimpse_fun(data, fun, print = TRUE)

Arguments

data A data frame to glimpse.

fun A function to map to each column.

print logical; Should all columns be printed as rows?

Value

A tibble with a row for every column with the count and proportion.

Examples

col_stats(dplyr::storms, dplyr::n_distinct)
col_stats(dplyr::storms, campfin::count_na)

count_diff 9

count_diff Count set difference

Description

Find the length of the set of difference between x and y vectors.

Usage

count_diff(x, y, ignore.case = FALSE)

Arguments

x A vector to check.

y A vector to compare against.

ignore.case logical; if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

Details

sum(x %out% y)

Value

The number of unique values of x not in y.

See Also

Other counting wrappers: count_in(), count_na(), count_out(), na_in(), na_out(), na_rep(),
prop_distinct(), prop_in(), prop_na(), prop_out(), what_in(), what_out()

Examples

only unique values are checked
count_diff(c("VT", "NH", "ZZ", "ZZ", "ME"), state.abb)

10 count_in

count_in Count in

Description

Count the total values of x that are %in% the vector y.

Usage

count_in(x, y, na.rm = TRUE, ignore.case = FALSE)

Arguments

x A vector to check.

y A vector to compare against.

na.rm logical; Should NA be ignored?

ignore.case logical; if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

Details

sum(x %out% y)

Value

The sum of x present in y.

See Also

Other counting wrappers: count_diff(), count_na(), count_out(), na_in(), na_out(), na_rep(),
prop_distinct(), prop_in(), prop_na(), prop_out(), what_in(), what_out()

Examples

count_in(c("VT", "NH", "ZZ", "ME"), state.abb)

count_na 11

count_na Count missing

Description

Count the total values of x that are NA.

Usage

count_na(x)

Arguments

x A vector to check.

Details

sum(is.na(x))

Value

The sum of x that are NA

See Also

Other counting wrappers: count_diff(), count_in(), count_out(), na_in(), na_out(), na_rep(),
prop_distinct(), prop_in(), prop_na(), prop_out(), what_in(), what_out()

Examples

count_na(c("VT", "NH", NA, "ME"))

count_out Count out

Description

Count the total values of x that are are %out% of the vector y.

Usage

count_out(x, y, na.rm = TRUE, ignore.case = FALSE)

12 dark2

Arguments

x A vector to check.

y A vector to compare against.

na.rm logical; Should NA be ignored?

ignore.case logical; if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

Details

sum(x %out% y)

Value

The sum of x absent in y.

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), na_in(), na_out(), na_rep(),
prop_distinct(), prop_in(), prop_na(), prop_out(), what_in(), what_out()

Examples

count_out(c("VT", "NH", "ZZ", "ME"), state.abb)

dark2 Dark Color Palette

Description

The Dark2 brewer color palette

Usage

dark2

Format

A named character vector of hex color codes (length 8).

expand_abbrev 13

expand_abbrev Expand Abbreviations

Description

Create or use a named vector (c("abb" = "rep")) and pass it to stringr::str_replace_all().
The abb argument is surrounded with \\b to capture only isolated abbreviations. To be used inside
normal_address() and normal_city() with usps_street and usps_city, respectively.

Usage

expand_abbrev(x, abb = NULL, rep = NULL)

Arguments

x A vector containing abbreviations.

abb One of three objects: (1) A dataframe with abbreviations in the first column and
corresponding replacement strings in the second column; (2) a named vector,
with abbreviations as names for their respective replacements (e.g., c("abb" =
"rep")); or (3) an unnamed vector of abbreviations with an unnamed vector of
replacements in the rep argument.

rep If abb is an unnamed vector, a vector of replacement strings for each abbrevia-
tion in abb.

Value

The vector x with abbreviation replaced with their full version.

See Also

Other geographic normalization functions: abbrev_full(), abbrev_state(), check_city(), expand_state(),
fetch_city(), normal_address(), normal_city(), normal_state(), normal_zip(), str_normal()

Examples

expand_abbrev(x = "MT VERNON", abb = c("MT" = "MOUNT"))
expand_abbrev(x = "VT", abb = state.abb, rep = state.name)
expand_abbrev(x = "Low FE Level", abb = tibble::tibble(x = "FE", y = "Iron"))

14 explore_plot

expand_state Expand US state names

Description

This function is used to first normalize an abb and then call expand_abbrev() using valid_state
and valid_name as the abb and rep arguments.

Usage

expand_state(abb)

Arguments

abb A abb US state name character vector (e.g., "Vermont").

Value

The 2-letter USPS abbreviation of for state names (e.g., "VT").

See Also

Other geographic normalization functions: abbrev_full(), abbrev_state(), check_city(), expand_abbrev(),
fetch_city(), normal_address(), normal_city(), normal_state(), normal_zip(), str_normal()

Examples

expand_state(abb = state.abb)
expand_state(abb = c("nm", "fr"))

explore_plot Create Basic Barplots

Description

This function simply wraps around ggplot2::geom_col() to take a dataframe and categorical
variable to return a custom barplot ggplot object. The bars are arranged in descending order and
are limited to the 8 most frequent values.

Usage

explore_plot(data, var, nbar = 8, palette = "Dark2", na.rm = TRUE)

extra_city 15

Arguments

data The data frame to explore.

var A variable to plot.

nbar The number of bars to plot. Always shows most common values.

palette The color palette passed to [ggplot2::scale_fill_brewer().

na.rm logical: Should NA values of var be removed?

Value

A ggplot barplot object. Can then be combined with other ggplot layers with + to customize.

Examples

explore_plot(iris, Species)

extra_city Additional US City Names

Description

Cities not contained in valid_city, but are accepted localities (neighborhoods or census designated
places). This vector consists of normalized self-reported cities in the public data processed by
accountability project that were validated by Google Maps Geocoding API (whose check_city()
results evaluate to TRUE). The most recent updated version of the extra_city can be found in this
Google Sheet

Usage

extra_city

Format

A sorted vector of unique locality names (length 127).

https://docs.google.com/spreadsheets/d/17pi8LW1nTaGzThfUmQMZ_6HMWPxUPatqrTEWzY6LPoI
https://docs.google.com/spreadsheets/d/17pi8LW1nTaGzThfUmQMZ_6HMWPxUPatqrTEWzY6LPoI

16 file_age

fetch_city Return Closest Match Result of Cities from Google Maps API

Description

Use the httr::GET() to send a request to the Google Maps API for geocoding information. The
query will concatenate all the geographical information that is passed in into a single string. Then
the function pulls the formatted_address endpoint of the API results and extracts the the first
field of the result. Note that you will need to pass in your Google Maps Place API key with the key
argument.

Usage

fetch_city(address = NULL, key = NULL)

Arguments

address A vector of street addresses. Sent to the API as one string.

key A character containing your alphanumeric Google Maps API key.

Value

A character vector of formatted address endpoints from Google. This will include all the fields
from street address, city, state/province, zipcode/postal code to country/regions. NA_character_ is
returned for all errored API calls.

See Also

https://developers.google.com/maps/documentation/geocoding/overview?csw=1

Other geographic normalization functions: abbrev_full(), abbrev_state(), check_city(), expand_abbrev(),
expand_state(), normal_address(), normal_city(), normal_state(), normal_zip(), str_normal()

file_age File modification date age

Description

The period of time since a system file was modified.

Usage

file_age(...)

https://developers.google.com/maps/documentation/geocoding/overview?csw=1

file_encoding 17

Arguments

... Arguments passed to file.info(), namely character vectors containing file
paths. Tilde-expansion is done: see path.expand().

Value

A Period class object.

Examples

file_age(system.file("README.md", package = "campfin"))

file_encoding File Encoding

Description

Call the file command line tool with option -i.

Usage

file_encoding(path)

Arguments

path A local file path or glob to check.

Value

A tibble of file encoding.

flag_dupes Flag Duplicate Rows With New Column

Description

This function uses dplyr::mutate() to create a new dupe_flag logical variable with TRUE values
for any record duplicated more than once.

Usage

flag_dupes(data, ..., .check = TRUE, .both = TRUE)

18 flag_na

Arguments

data A data frame to flag.

... Arguments passed to dplyr::select() (needs to be at least dplyr::everything()).

.check Whether the resulting column should be summed and removed if empty.

.both Whether to flag both duplicates or just subsequent.

Value

A data frame with a new dupe_flag logical variable.

Examples

flag_dupes(iris, dplyr::everything())
flag_dupes(iris, dplyr::everything(), .both = FALSE)

flag_na Flag Missing Values With New Column

Description

This function uses dplyr::mutate() to create a new na_flag logical variable with TRUE values
for any record missing any value in the selected columns.

Usage

flag_na(data, ...)

Arguments

data A data frame to flag.

... Arguments passed to dplyr::select() (needs to be at least dplyr::everything()).

Value

A data frame with a new na_flag logical variable.

Examples

flag_na(dplyr::starwars, hair_color)

flush_memory 19

flush_memory Flush Garbage Memory

Description

Run a full gc() a number of times.

Usage

flush_memory(n = 1)

Arguments

n The number of times to run gc().

guess_delim Guess the delimiter of a text file

Description

Taken from code used in vroom::vroom() with automatic reading.

Usage

guess_delim(file, delims = c(",", "\t", "|", ";"), string = FALSE)

Arguments

file Either a path to a file or character string (with at least one newline character).

delims The vector of single characters to guess from. Defaults to: comma, tab, pipe, or
semicolon.

string Should the file be treated as a string regardless of newline.

Value

The single character guessed as a delimiter.

Source

https://github.com/tidyverse/vroom/blob/85143f7a417376eaf0e2037ca9575f637e4346c2/
R/vroom.R#L288

https://github.com/tidyverse/vroom/blob/85143f7a417376eaf0e2037ca9575f637e4346c2/R/vroom.R#L288
https://github.com/tidyverse/vroom/blob/85143f7a417376eaf0e2037ca9575f637e4346c2/R/vroom.R#L288
https://github.com/tidyverse/vroom/blob/85143f7a417376eaf0e2037ca9575f637e4346c2/R/vroom.R#L288

20 invert_named

Examples

guess_delim(system.file("extdata", "vt_contribs.csv", package = "campfin"))
guess_delim("ID;FirstName;MI;LastName;JobTitle", string = TRUE)
guess_delim("
a|b|c
1|2|3
")

invalid_city Invalid City Names

Description

A custom vector containing common invalid city names.

Usage

invalid_city

Format

A vector of length 54.

invert_named Invert a named vector

Description

Invert the names and elements of a vector, useful when using named vectors as the abbreviation
arguments both of expand_abbrev() and abbrev_full() (or their parent normalization functions
like normal_address())

Usage

invert_named(x)

Arguments

x A named vector.

Value

A named vector with names in place of elements and vice versa.

Examples

invert_named(x = c("name" = "element"))

is_abbrev 21

is_abbrev Check if abbreviation

Description

To return a value of TRUE, (1) the first letter of abb must match the first letter of full, (2) all letters
of abb must exist in full, and (3) those letters of abb must be in the same order as they appear in
full.

Usage

is_abbrev(abb, full)

Arguments

abb A suspected abbreviation

full A long form string to test against

Value

logical; whether abb is potential abbreviation of full

Examples

is_abbrev(abb = "BRX", full = "BRONX")
is_abbrev(abb = state.abb, full = state.name)
is_abbrev(abb = "NOLA", full = "New Orleans")
is_abbrev(abb = "FE", full = "Iron")

is_binary Check if Binary

Description

Uses dplyr::n_distinct() to check if there are only two unique values.

Usage

is_binary(x, na.rm = TRUE)

Arguments

x A vector.

na.rm logical; Should NA be ignored, TRUE by default.

22 keypad_convert

Value

TRUE if only 2 unique values.

Examples

if (is_binary(x <- c("Yes", "No"))) x == "Yes"

is_even Check if even

Description

Check if even

Usage

is_even(x)

Arguments

x A numeric vector.

Value

logical; Whether the integer is even or odd.

Examples

is_even(1:10)
is_even(10L)

keypad_convert Convert letters or numbers to their keypad counterpart

Description

This function works best when converting numbers to letters, as each number only has a single
possible letter. For each letter, there are 3 or 4 possible letters, resulting in a number of possible
conversions. This function was intended to convert phonetic telephone numbers to their valid nu-
meric equivalent; when used in this manner, each letter in a string can be lazily replaced without
changing the rest of the string.

Usage

keypad_convert(x, ext = FALSE)

most_common 23

Arguments

x A vector of characters or letters.

ext logical; Should extension text be converted to numbers. Defaults to FALSE and
matches x, ext, and extension followed by a space or number.

Details

When replacing letters, this function relies on the feature of stringr::str_replace_all() to
work with named vectors (c("A" = "2")).

Value

If a character vector is supplied, a vector of each elements numeric counterpart is returned. If a
numeric vector (or a completely coercible character vector) is supplied, then a list is returned, each
element of which contacts a vector of letters for each number.

Examples

keypad_convert("1-800-CASH-NOW ext123")
keypad_convert(c("abc", "123"))
keypad_convert(letters)

most_common Find most common values

Description

From a character vector, which values are most common?

Usage

most_common(x, n = 6)

Arguments

x A vector.

n Number of values to return.

Value

Sorted vector of n most common values.

Examples

most_common(iris$Species, n = 1)

24 na_out

na_in Remove in

Description

Set NA for the values of x that are %in% the vector y.

Usage

na_in(x, y, ignore.case = FALSE)

Arguments

x A vector to check.

y A vector to compare against.

ignore.case logical; if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

Value

The vector x missing any values in y.

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), count_out(), na_out(),
na_rep(), prop_distinct(), prop_in(), prop_na(), prop_out(), what_in(), what_out()

Examples

na_in(c("VT", "NH", "ZZ", "ME"), state.abb)
na_in(1:10, seq(1, 10, 2))

na_out Remove out

Description

Set NA for the values of x that are %out% of the vector y.

Usage

na_out(x, y, ignore.case = FALSE)

na_rep 25

Arguments

x A vector to check.

y A vector to compare against.

ignore.case logical; if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

Value

The vector x missing any values not in y.

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), count_out(), na_in(), na_rep(),
prop_distinct(), prop_in(), prop_na(), prop_out(), what_in(), what_out()

Examples

na_out(c("VT", "NH", "ZZ", "ME"), state.abb)
na_out(1:10, seq(1, 10, 2))

na_rep Remove repeated character elements

Description

Set NA for the values of x that contain a single repeating character and no other characters.

Usage

na_rep(x, n = 0)

Arguments

x A vector to check.

n The minimum number times a character must repeat. If 0, the default, then any
string of one character will be replaced with NA. If greater than 0, the string must
contain greater than n number of repetitions.

Details

Uses the regular expression "^(.)\\1+$".

Value

The vector x with NA replacing repeating character values.

26 normal_address

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), count_out(), na_in(), na_out(),
prop_distinct(), prop_in(), prop_na(), prop_out(), what_in(), what_out()

Examples

na_rep(c("VT", "NH", "ZZ", "ME"))

non_ascii Show non-ASCII lines of file

Description

Show non-ASCII lines of file

Usage

non_ascii(path, highlight = FALSE)

Arguments

path The path to a text file to check.

highlight A function used to add ANSI escapes to highlight bytes.

Value

Tibble of line locations.

Examples

non_ascii(system.file("README.md", package = "campfin"))

normal_address Normalize street addresses

Description

Return consistent version of a US Street Address using stringr::str_*() functions. Letters are
capitalized, punctuation is removed or replaced, and excess whitespace is trimmed and squished.
Optionally, street suffix abbreviations ("AVE") can be replaced with their long form ("AVENUE").
Invalid addresses from a vector can be removed (possibly using invalid_city) as well as single
(repeating) character strings ("XXXXXX").

normal_city 27

Usage

normal_address(
address,
abbs = NULL,
na = c("", "NA"),
punct = "",
na_rep = FALSE,
abb_end = TRUE

)

Arguments

address A vector of street addresses (ideally without city, state, or postal code).

abbs A named vector or two-column data frame (like usps_street) passed to expand_abbrev().
See ?expand_abbrev for the type of object structure needed.

na A character vector of values to make NA (like invalid_city).

punct A character value with which to replace all punctuation.

na_rep logical; If TRUE, replace all single digit (repeating) strings with NA.

abb_end logical; Should only the last word the string be abbreviated with the abbs argu-
ment? Passed to the end argument of str_normal().

Value

A vector of normalized street addresses.

See Also

Other geographic normalization functions: abbrev_full(), abbrev_state(), check_city(), expand_abbrev(),
expand_state(), fetch_city(), normal_city(), normal_state(), normal_zip(), str_normal()

Examples

normal_address("P.O. #123, C/O John Smith", abbs = usps_street)
normal_address("12east 2nd street, #209", abbs = usps_street, abb_end = FALSE)

normal_city Normalize city names

Description

Return consistent version of a city names using stringr::str_*() functions. Letters are capital-
ized, hyphens and underscores are replaced with whitespace, other punctuation is removed, numbers
are removed, and excess whitespace is trimmed and squished. Optionally, geographic abbreviations
("MT") can be replaced with their long form ("MOUNT"). Invalid addresses from a vector can be
removed (possibly using invalid_city) as well as single (repeating) character strings ("XXXXXX").

28 normal_phone

Usage

normal_city(city, abbs = NULL, states = NULL, na = c("", "NA"), na_rep = FALSE)

Arguments

city A vector of city names.
abbs A named vector or data frame of abbreviations passed to expand_abbrev; see

expand_abbrev for format of abb argument or use the usps_city tibble.
states A vector of state abbreviations ("VT") to remove from the end (and only end) of

city names ("STOWE VT").
na A vector of values to make NA (useful with the invalid_city vector).
na_rep logical; If TRUE, replace all single digit (repeating) strings with NA.

Value

A vector of normalized city names.

See Also

Other geographic normalization functions: abbrev_full(), abbrev_state(), check_city(), expand_abbrev(),
expand_state(), fetch_city(), normal_address(), normal_state(), normal_zip(), str_normal()

Examples

normal_city(
city = c("Stowe, VT", "UNKNOWN CITY", "Burlington", "ST JOHNSBURY", "XXX"),
abbs = c("ST" = "SAINT"),
states = "VT",
na = invalid_city,
na_rep = TRUE

)

normal_phone Normalize phone number

Description

Take US phone numbers in any number of formats and try to convert them to a standard format.

Usage

normal_phone(
number,
format = "(%a) %e-%l",
na_bad = FALSE,
convert = FALSE,
rm_ext = FALSE

)

normal_state 29

Arguments

number A vector of phone number in any format.
format The desired output format, with %a representing the 3-digit area code, %e repre-

senting the 3-digit exchange, and %l representing the 4-digit line number. The
punctuation between each part of the format is used in the normalized number
(e.g., "(%a) %e-%l" or "%a-%e-%l").

na_bad logical; Should invalid numbers be replaced with NA.
convert logical; Should keypad_convert() be invoked to replace numbers with their

keypad equivalent.
rm_ext logical; Should extensions be removed from the end of a number.

Value

A normalized telephone number.

Examples

normal_phone(number = c("916-225-5887"))

normal_state Normalize US State Abbreviations

Description

Return consistent version of a state abbreviations using stringr::str_*() functions. Letters are
capitalized, all non-letters characters are removed, and excess whitespace is trimmed and squished,
and then abbrev_full() is called with usps_state.

Usage

normal_state(
state,
abbreviate = TRUE,
na = c("", "NA"),
na_rep = FALSE,
valid = NULL

)

Arguments

state A vector of US state names or abbreviations.
abbreviate If TRUE (default), replace state names with the 2-digit abbreviation using the

built-in state.abb and state.name vectors.
na A vector of values to make NA.
na_rep logical; If TRUE, make all single digit repeating strings NA (removes valid "AA"

code for "American Armed Forces").
valid A vector of valid abbreviations to compare to and remove those not shared.

30 normal_zip

Value

A vector of normalized 2-digit state abbreviations.

See Also

Other geographic normalization functions: abbrev_full(), abbrev_state(), check_city(), expand_abbrev(),
expand_state(), fetch_city(), normal_address(), normal_city(), normal_zip(), str_normal()

Examples

normal_state(
state = c("VT", "N/A", "Vermont", "XX", "ZA"),
abbreviate = TRUE,
na = c("", "NA"),
na_rep = TRUE,
valid = NULL

)

normal_zip Normalize ZIP codes

Description

Return consistent version US ZIP codes using stringr::str_*() functions. Non-number charac-
ters are removed, strings are padded with zeroes on the left, and ZIP+4 suffixes are removed. Invalid
ZIP codes from a vector can be removed as well as single (repeating) character strings.

Usage

normal_zip(zip, na = c("", "NA"), na_rep = FALSE, pad = FALSE)

Arguments

zip A vector of US ZIP codes.

na A vector of values to pass to na_in().

na_rep logical; If TRUE, na_rep() will be called. Please note that 22222, 44444, and
55555 valid ZIP codes that will not be removed.

pad logical; Should ZIP codes less than five digits be padded with a leading zero?
Leading zeros (as are found in New England ZIP codes) are often dropped by
programs like Microsoft Excel when parsed as numeric values.

Value

A character vector of normalized 5-digit ZIP codes.

path.abbrev 31

See Also

Other geographic normalization functions: abbrev_full(), abbrev_state(), check_city(), expand_abbrev(),
expand_state(), fetch_city(), normal_address(), normal_city(), normal_state(), str_normal()

Examples

normal_zip(
zip = c("05672-5563", "N/A", "05401", "5819", "00000"),
na = c("", "NA"),
na_rep = TRUE,
pad = TRUE

)

path.abbrev Abbreviate a file path

Description

This is an inverse of path.expand(), which replaces the home directory or project directory with
a tilde.

Usage

path.abbrev(path, dir = fs::path_wd())

Arguments

path Character vector containing one or more full paths.

dir The directory to replace with ~. Defaults to fs::path_wd().

Value

Abbreviated file paths.

Examples

print(fs::path_wd("test"))
path.abbrev(fs::path_wd("test"))

32 prop_distinct

progress_table Create a progress table

Description

Create a tibble with rows for each stage of normalization and columns for the various statistics most
useful in assessing the progress of each stage.

Usage

progress_table(..., compare)

Arguments

... Any number of vectors to check.

compare A vector to compare each of ... against. Useful with valid_zip, valid_state
(valid_name), or valid_city.

Value

A table with a row for each vector in

Examples

progress_table(state.name, toupper(state.name), compare = valid_name)

prop_distinct Proportion missing

Description

Find the proportion of values of x that are distinct.

Usage

prop_distinct(x)

Arguments

x A vector to check.

Details

length(unique(x))/length(x)

prop_in 33

Value

The ratio of distinct values x to total values of x.

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), count_out(), na_in(), na_out(),
na_rep(), prop_in(), prop_na(), prop_out(), what_in(), what_out()

Examples

prop_distinct(c("VT", "VT", NA, "ME"))

prop_in Proportion in

Description

Find the proportion of values of x that are %in% the vector y.

Usage

prop_in(x, y, na.rm = TRUE, ignore.case = FALSE)

Arguments

x A vector to check.

y A vector to compare against.

na.rm logical; Should NA be ignored?

ignore.case logical; if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

Details

mean(x %in% y)

Value

The proportion of x present in y.

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), count_out(), na_in(), na_out(),
na_rep(), prop_distinct(), prop_na(), prop_out(), what_in(), what_out()

Examples

prop_in(c("VT", "NH", "ZZ", "ME"), state.abb)

34 prop_out

prop_na Proportion missing

Description

Find the proportion of values of x that are NA.

Usage

prop_na(x)

Arguments

x A vector to check.

Details

mean(is.na(x))

Value

The proportion of values of x that are NA.

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), count_out(), na_in(), na_out(),
na_rep(), prop_distinct(), prop_in(), prop_out(), what_in(), what_out()

Examples

prop_na(c("VT", "NH", NA, "ME"))

prop_out Proportion out

Description

Find the proportion of values of x that are %out% of the vector y.

Usage

prop_out(x, y, na.rm = TRUE, ignore.case = FALSE)

read_names 35

Arguments

x A vector to check.

y A vector to compare against.

na.rm logical; Should NA be ignored?

ignore.case logical; if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

Details

mean(x %out% y)

Value

The proportion of x absent in y.

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), count_out(), na_in(), na_out(),
na_rep(), prop_distinct(), prop_in(), prop_na(), what_in(), what_out()

Examples

prop_out(c("VT", "NH", "ZZ", "ME"), state.abb)

read_names Read column names

Description

Read the first line of a delimited file as vector.

Usage

read_names(file, delim = guess_delim(file))

Arguments

file Path to text file.

delim Character separating column names.

Value

Character vector of column names.

Examples

read_names("date,lgl\n11/09/2016,TRUE")

36 rx_break

rename_prefix Convert data frame name suffixes to prefixes

Description

When performing a dplyr::left_join(), the suffix argument allows the user to replace the
default .x and .y that are appended to column names shared between the two data frames. This
function allows a user to convert those suffixes to prefixes.

Usage

rename_prefix(df, suffix = c(".x", ".y"), punct = TRUE)

Arguments

df A joined data frame.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.
Will be converted to prefixes.

punct logical; Should punctuation at the start of the suffix be detected and placed at
the end of the new prefix? TRUE by default.

Value

A data frame with new column names.

Examples

a <- data.frame(x = letters[1:3], y = 1:3)
b <- data.frame(x = letters[1:3], y = 4:6)
df <- dplyr::left_join(a, b, by = "x", suffix = c(".a", ".b"))
rename_prefix(df, suffix = c(".a", ".b"), punct = TRUE)

rx_break Form a word break regex pattern

Description

Wrap a word in word boundary (\\b) characters. Useful when combined with stringr::str_which()
and stringr::str_detect() to match only entire words and not that word inside another word
(e.g., "sting" and "testing").

Usage

rx_break(pattern)

rx_phone 37

Arguments

pattern A regex pattern (a word) to wrap in \\b.

Value

The a glue vector of pattern wrapped in \\b.

Examples

rx_break("test")
rx_break(state.abb[1:5])

rx_phone Phone number regex

Description

The regex string to match US phone numbers in a variety of common formats.

Usage

rx_phone

Format

A character string (length 1).

rx_state State regex

Description

The regex string to extract state string preceding ZIP code.

Usage

rx_state

Format

A character string (length 1).

38 scale_x_truncate

rx_url URL regex

Description

The regex string to match valid URLs.

Usage

rx_url

Format

A character string (length 1).

rx_zip ZIP code regex

Description

The regex string to extract ZIP code from the end of address.

Usage

rx_zip

Format

A character string (length 1).

scale_x_truncate Truncate and wrap x-axis labels

Description

Truncate the labels of a plot’s discrete x-axis labels so that the text does not overflow and collide
with other bars.

Usage

scale_x_truncate(n = 15, ...)

scale_x_wrap(width = 15, ...)

str_dist 39

Arguments

n The maximum width of string. Passed to stringr::str_trunc().

... Additional arguments passed to ggplot2::scale_x_discrete().

width Positive integer giving target line width in characters. A width less than or equal
to 1 will put each word on its own line. Passed to stringr::str_wrap().

str_dist Calculate string distance

Description

This function wraps around stringdist::stringdist().

Usage

str_dist(a, b, method = "osa", ...)

Arguments

a R object (target); will be converted by base::as.character().

b R object (source); will be converted by base::as.character().

method Method for distance calculation. The default is "osa."

... Other arguments passed to stringdist::stringdist().

Value

The distance between string a and string b.

Examples

str_dist(a = "BRULINGTN", b = "BURLINGTON")

str_normal Normalize a character string

Description

The generic normalization that underpins functions like normal_city() and normal_address().
This function simply chains together three stringr::str_*() functions:

1. Convert to uppercase.

2. Replace punctuation with whitespaces.

3. Trim and squish excess whitespace.

40 this_file_new

Usage

str_normal(x, case = TRUE, punct = "", quote = TRUE, squish = TRUE)

Arguments

x A character string to normalize.

case logical; whether stringr::str_to_upper() should be called.

punct character; A character string to replace most punctuation with.

quote logical; whether stringr::str_replace_all() should be called on double
quotes.

squish logical; whether stringr::str_squish() should be called.

Value

A normalized vector of the same length.

See Also

Other geographic normalization functions: abbrev_full(), abbrev_state(), check_city(), expand_abbrev(),
expand_state(), fetch_city(), normal_address(), normal_city(), normal_state(), normal_zip()

Examples

str_normal(" TestING 123 example_test.String ")

this_file_new Check if a single file is new

Description

This function tests whether a single file has a modification date equal to the system date. Useful
when repeatedly running code with a lengthy download stage. Many state databases are updated
daily, so new data can be helpful but not always necessary. Set this function in an if statement.

Usage

this_file_new(path)

Arguments

path The path to a file to check.

Value

logical; Whether the file has a modification date equal to today.

url2path 41

Examples

tmp <- tempfile()
this_file_new(tmp)

url2path Make a File Path from a URL

Description

Combine the basename() of a file URL with a directory path.

Usage

url2path(url, dir)

Arguments

url The URL of a file to download.

dir The directory where the file will be downloaded.

Details

Useful in the destfile argument to download.file() to save a file with the same name as the
URL’s file name.

Value

The desired file path to a URL file.

Examples

url2path("https://floridalobbyist.gov/reports/llob.txt", tempdir())

url_file_size Check a URL file size

Description

Call httr::HEAD() and return the number of bytes in the file to be downloaded.

Usage

url_file_size(url)

42 use_diary

Arguments

url The URL of the file to query.

Value

The size of a file to be downloaded.

use_diary Create a new template data diary

Description

Take the arguments supplied and put them into the appropriate places in a new template diary. Write
the new template diary in the supplied directory.

Usage

use_diary(
st,
type,
author,
path = "state/{st}/{type}/docs/{st}_{type}_diary.Rmd",
auto = FALSE

)

Arguments

st The USPS state abbreviation. State data only, no federal agencies.

type The type of data, one of "contribs", "expends", "lobby", "contracts", "salary", or
"voters".

author The author name of the new diary.

path The file path, relative to your working directory, where the diary file will be
created. If you use NA, then the lines of the diary will be returned as a character
vector. If you specify a character string file path that contains directories that
do not exist then they will be created. By default, the path creates the diary in a
directory that is expected by the Accountability Project GitHub repository.

auto Must be set to TRUE for the diary to be created and opened.

Value

The file path of new diary, invisibly.

Examples

use_diary("VT", "contribs", "Kiernan Nicholls", NA, auto = FALSE)
use_diary("DC", "expends", "Kiernan Nicholls", tempfile(), auto = FALSE)

https://github.com/irworkshop/accountability_datacleaning

usps_city 43

usps_city USPS City Abbreviations

Description

A curated and edited subset of usps_street containing the USPS abbreviations found in city names.
Useful as the geo_abbs argument of normal_city().

Usage

usps_city

Format

A tibble with 154 rows of 2 variables:

full Primary Street Suffix

abb Commonly Used Street Suffix or Abbreviation ...

Source

USPS Appendix C1, Street Abbreviations

usps_state USPS State Abbreviations

Description

A tibble containing the USPS.

Usage

usps_state

Format

A tibble with 62 rows of 2 variables:

full Primary Street Suffix

abb Commonly Used Street Suffix or Abbreviation ...

Source

USPS Appendix B, Two–Letter State Abbreviations

https://pe.usps.com/text/pub28/28apc_002.htm
https://pe.usps.com/text/pub28/28apb.htm

44 valid_abb

usps_street USPS Street Abbreviations

Description

A tibble containing common street suffixes or suffix abbreviations and their full equivalent. Useful
as the add_abbs argument of normal_address().

Usage

usps_street

Format

A tibble with 325 rows of 3 variables:

full Primary Street Suffix.

abb Commonly Used Street Suffix or Abbreviation. ...

Source

USPS Appendix C1 Street Abbreviations.

valid_abb US State Abbreviations

Description

The abb column of the usps_state tibble.

Usage

valid_abb

Format

A vector of 2-digit abbreviations (length 62).

https://pe.usps.com/text/pub28/28apc_002.htm

valid_city 45

valid_city US City Names

Description

The city column of the zipcodes tibble.

Usage

valid_city

Format

A sorted vector of unique city names (length 19,083).

valid_name US State Names

Description

The state column of the usps_state tibble.

Usage

valid_name

Format

A vector of state names (length 62).

Details

Contains 12 more names than datasets::state.name.

valid_state US State Abbreviations

Description

The abb column of the usps_state tibble.

Usage

valid_state

Format

A vector of 2-digit abbreviations (length 62).

46 what_in

valid_zip Almost all of the valid USA ZIP Codes

Description

The zip column of the geo tibble.

Usage

valid_zip

Format

A sorted vector of 5-digit ZIP codes (length 44334).

what_in Which in

Description

Return the values of x that are %in% of the vector y.

Usage

what_in(x, y, ignore.case = FALSE)

Arguments

x A vector to check.

y A vector to compare against.

ignore.case logical; if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

Details

x[which(x %in% y)]

Value

The elements of x that are %in% y.

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), count_out(), na_in(), na_out(),
na_rep(), prop_distinct(), prop_in(), prop_na(), prop_out(), what_out()

what_out 47

Examples

what_in(c("VT", "DC", NA), state.abb)

what_out Which out

Description

Return the values of x that are %out% of the vector y.

Usage

what_out(x, y, na.rm = TRUE, ignore.case = FALSE)

Arguments

x A vector to check.

y A vector to compare against.

na.rm logical; Should NA be ignored?

ignore.case logical; if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

Details

x[which(x %out% y)]

Value

The elements of x that are %out% y.

See Also

Other counting wrappers: count_diff(), count_in(), count_na(), count_out(), na_in(), na_out(),
na_rep(), prop_distinct(), prop_in(), prop_na(), prop_out(), what_in()

Examples

what_out(c("VT", "DC", NA), state.abb)

48 %out%

zipcodes US City, state, and ZIP

Description

This tibble is the third version of a popular zipcodes database. The original CivicSpace US ZIP
Code Database was created by Schuyler Erle using ZIP code gazetteers from the US Census Bureau
from 1999 and 2000, augmented with additional ZIP code information from the Census Bureau’s
TIGER/Line 2003 data set. The second version was published as the zipcode::zipcode dataframe
object. This version has dropped the latitude and longitude, reorganized columns, and normalize
the city values with normal_city().

Usage

zipcodes

Format

A tibble with 44,336 rows of 3 variables:

city Normalized city name.

state Two letter state abbreviation.

zip Five-digit ZIP Code. ...

Source

Daniel Coven’s federalgovernmentzipcodes.us web site and the CivicSpace US ZIP Code Database
written by Schuyler Erle schuyler@geocoder.us, 5 August 2004. Original CSV files available from
https://web.archive.org/web/20221005220101/http://federalgovernmentzipcodes.us/free-zipcode-database-Primary.
csv

%out% Inverted match

Description
%out% is an inverted version of the infix %in% operator.

Usage

x %out% table

Arguments

x vector: the values to be matched. Long vectors are supported.

table vector or NULL: the values to be matched against.

mailto:schuyler@geocoder.us
https://web.archive.org/web/20221005220101/http://federalgovernmentzipcodes.us/free-zipcode-database-Primary.csv
https://web.archive.org/web/20221005220101/http://federalgovernmentzipcodes.us/free-zipcode-database-Primary.csv

%out% 49

Details
%out% is currently defined as "%out%" <- function(x, table) match(x, table, nomatch = 0)
== 0

Value

logical; if x is not present in table

Examples

c("A", "B", "3") %out% LETTERS

Index

∗ Simple Counting Wrappers
progress_table, 32

∗ counting wrappers
count_diff, 9
count_in, 10
count_na, 11
count_out, 11
na_in, 24
na_out, 24
na_rep, 25
prop_distinct, 32
prop_in, 33
prop_na, 34
prop_out, 34
what_in, 46
what_out, 47

∗ datasets
dark2, 12
extra_city, 15
invalid_city, 20
rx_phone, 37
rx_state, 37
rx_url, 38
rx_zip, 38
usps_city, 43
usps_state, 43
usps_street, 44
valid_abb, 44
valid_city, 45
valid_name, 45
valid_state, 45
valid_zip, 46
zipcodes, 48

∗ geographic normalization functions
abbrev_full, 3
abbrev_state, 4
check_city, 6
expand_abbrev, 13
expand_state, 14

fetch_city, 16
normal_address, 26
normal_city, 27
normal_state, 29
normal_zip, 30
str_normal, 39

%out%, 48

abbrev_full, 3, 5, 7, 13, 14, 16, 27, 28, 30,
31, 40

abbrev_full(), 4, 20, 29
abbrev_state, 4, 4, 7, 13, 14, 16, 27, 28, 30,

31, 40
add_prop, 5
all(), 6
all_files_new, 6

base::as.character(), 39
basename(), 41

check_city, 4, 5, 6, 13, 14, 16, 27, 28, 30, 31,
40

check_city(), 15
col_date_mdy, 7
col_date_usa (col_date_mdy), 7
col_stats, 8
count_diff, 9, 10–12, 24–26, 33–35, 46, 47
count_in, 9, 10, 11, 12, 24–26, 33–35, 46, 47
count_na, 9, 10, 11, 12, 24–26, 33–35, 46, 47
count_na(), 8
count_out, 9–11, 11, 24–26, 33–35, 46, 47
cumsum(), 5

dark2, 12
datasets::state.name, 45
download.file(), 41
dplyr::count(), 5
dplyr::everything(), 18
dplyr::left_join(), 36
dplyr::mutate(), 17, 18

50

INDEX 51

dplyr::n_distinct(), 8, 21
dplyr::select(), 18

expand_abbrev, 4, 5, 7, 13, 14, 16, 27, 28, 30,
31, 40

expand_abbrev(), 3, 14, 20, 27
expand_state, 4, 5, 7, 13, 14, 16, 27, 28, 30,

31, 40
explore_plot, 14
extra_city, 15

fetch_city, 4, 5, 7, 13, 14, 16, 27, 28, 30, 31,
40

file.info(), 17
file_age, 16
file_encoding, 17
flag_dupes, 17
flag_na, 18
flush_memory, 19
fs::dir_ls(), 6
fs::path_wd(), 31

gc(), 19
ggplot2::geom_col(), 14
ggplot2::scale_x_discrete(), 39
glimpse_fun (col_stats), 8
guess_delim, 19

httr::GET(), 6, 16
httr::HEAD(), 41

invalid_city, 20, 26–28
invert_named, 20
is_abbrev, 21
is_binary, 21
is_even, 22

keypad_convert, 22
keypad_convert(), 29

most_common, 23

na_in, 9–12, 24, 25, 26, 33–35, 46, 47
na_in(), 30
na_out, 9–12, 24, 24, 26, 33–35, 46, 47
na_rep, 9–12, 24, 25, 25, 33–35, 46, 47
na_rep(), 30
non_ascii, 26
normal_address, 4, 5, 7, 13, 14, 16, 26, 28,

30, 31, 40

normal_address(), 13, 20, 39, 44
normal_city, 4, 5, 7, 13, 14, 16, 27, 27, 30,

31, 40
normal_city(), 13, 39, 43, 48
normal_phone, 28
normal_state, 4, 5, 7, 13, 14, 16, 27, 28, 29,

31, 40
normal_zip, 4, 5, 7, 13, 14, 16, 27, 28, 30, 30,

40

path.abbrev, 31
path.expand(), 17, 31
progress_table, 32
prop.table(), 5
prop_distinct, 9–12, 24–26, 32, 33–35, 46,

47
prop_in, 9–12, 24–26, 33, 33, 34, 35, 46, 47
prop_na, 9–12, 24–26, 33, 34, 35, 46, 47
prop_out, 9–12, 24–26, 33, 34, 34, 46, 47

read_names, 35
readr::col_date(), 7
rename_prefix, 36
rx_break, 36
rx_phone, 37
rx_state, 37
rx_url, 38
rx_zip, 38

scale_x_truncate, 38
scale_x_wrap (scale_x_truncate), 38
str_dist, 39
str_normal, 4, 5, 7, 13, 14, 16, 27, 28, 30, 31,

39
str_normal(), 27
stringdist::stringdist(), 39
stringr::str_detect(), 36
stringr::str_replace_all(), 3, 13, 23, 40
stringr::str_squish(), 40
stringr::str_to_upper(), 40
stringr::str_trunc(), 39
stringr::str_which(), 36
stringr::str_wrap(), 39

this_file_new, 40

url2path, 41
url_file_size, 41
use_diary, 42

52 INDEX

usps_city, 3, 13, 28, 43
usps_state, 3, 29, 43
usps_street, 3, 13, 27, 43, 44

valid_abb, 44
valid_city, 15, 32, 45
valid_name, 4, 14, 32, 45
valid_state, 4, 14, 32, 45
valid_zip, 32, 46

what_in, 9–12, 24–26, 33–35, 46, 47
what_out, 9–12, 24–26, 33–35, 46, 47

zipcodes, 48

	abbrev_full
	abbrev_state
	add_prop
	all_files_new
	check_city
	col_date_mdy
	col_stats
	count_diff
	count_in
	count_na
	count_out
	dark2
	expand_abbrev
	expand_state
	explore_plot
	extra_city
	fetch_city
	file_age
	file_encoding
	flag_dupes
	flag_na
	flush_memory
	guess_delim
	invalid_city
	invert_named
	is_abbrev
	is_binary
	is_even
	keypad_convert
	most_common
	na_in
	na_out
	na_rep
	non_ascii
	normal_address
	normal_city
	normal_phone
	normal_state
	normal_zip
	path.abbrev
	progress_table
	prop_distinct
	prop_in
	prop_na
	prop_out
	read_names
	rename_prefix
	rx_break
	rx_phone
	rx_state
	rx_url
	rx_zip
	scale_x_truncate
	str_dist
	str_normal
	this_file_new
	url2path
	url_file_size
	use_diary
	usps_city
	usps_state
	usps_street
	valid_abb
	valid_city
	valid_name
	valid_state
	valid_zip
	what_in
	what_out
	zipcodes
	out
	Index

